
INCORPORATING EFFICIENCY INTO THE FORECAST MODEL THE SAE MODEL

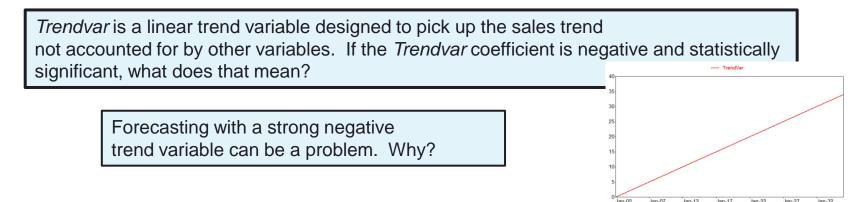
LONG TERM FORECASTING FRAMEWORK

METHODS USED FOR DEVELOPING LONG-TERM ENERGY FORECASTS

- 1. Generalized Econometric Model
 - Estimate a regression model where sales or energy (usually monthly) is a function of weather, economics, price, and efficiency trend

2. End-Use Model

- Engineering based model (pre-determined model parameters) where annual energy is forecast at the end-use level (e.g. water heater, refrigerator, heating and cooling systems..)
- 3. Statistically Adjusted End-Use (SAE) model
 - Structured model variables based on end-use concepts are used to forecast sales (monthly) through an estimated regression model
 - A combination of 1 and 2


TYPICAL MODEL SPECIFICATIONS

» Total Sales Model

 $Sales_m = f(HDD_m, CDD_m, Real Income_m, Population_m, Price_m, TrendVar_m)$

- Unrelated energy and customer forecast
- Simple economic relationship

- » User Per Customer and Customer Models Sales_m = Customer_m x Average Use_m
 - Customer_m =f(Population_m)
 - Average Use_m =f(HDD_m,CDD_m, HHIncome_m, Price, _m, TrendVar_m)
- Ties energy to custom growth and how customers use electricity
- Macro economics drive customer growth
- Customer economics drive average use

ADVANTAGES

- » Established Methodology
- » Well-suited for identifying sales trends and forecasting short-term sales
- » Can account for short-term changes in economic conditions
- » Can be used for weather-normalizing sales and demand
- » Relatively easy to estimate and to maintain

DISADVANTAGES

- » Often difficult to get the right sign and size on the model coefficients
 - Positive and/or insignificant price coefficient
 - Implied elasticity is too strong
- » Difficult to capture all relevant economic variables
 - Multicollinearity can be a problem (e.g. price and household income moving in the same direction)
- » Only accounts for structural changes through a trend variable
 - misses changing in technology saturation and efficiency trends

END-USE FORECASTING APPROACH

- » End-use models: An engineering-based approach were we develop annual kWh forecasts for defined end-uses
 - EPRI End-Use models: REEPS and COMMEND
- » Collect and maintain detailed end-use database
 - Number of units, appliance age distribution, technology options, technology costs, starting average and marginal UEC, housing square footage, thermal shell integrity
- » Embed assumption as to how these characteristics will change over time with households, income, energy price, appliance costs, and standards
- » Generate and sum resulting end-use energy requirements

HOW DO WE USE ELECTRICITY ?

- » We don't ... We use the stuff that uses electricity
 - We light our homes
 - We refrigerate and cook our food
 - We shower under hot water
 - We vacuum up after the kids and dog
 - We dry our clothes
 - We watch TV
- » To forecast electricity we reverse engineer the model
 - If cooling output depends on electricity input then electricity use depends on cooling demand

END-USE MODELING FRAMEWORK

» The end-use central equation:

 $Sales_e = Households \times Saturation_e \times UEC_e$

Where:

- Saturation_e = Number of homes that own end-use e
- *UEC_e* = Annual energy usage for end-use *e*
- » End-use energy intensity:

 $EI_e = Saturation_e \times UEC_e$

• Average annual usage per household (kWh)

UNIT ENERGY CONSUMPTION (ANNUAL USAGE – KWH)

 $UEC_{e} = \frac{Size_{e} \times Usage_{e}}{Efficiency_{e}}$

Where:

Size _e =	Average size of end use e
---------------------	---------------------------

- Usage_e = Measure of the intensity of appliance usage
- Efficiency_e = Average efficiency for end use e

If Size and Usage are constant then the UEC is driven by changes in Efficiency

NY ELECTRIC DRYER USAGE - 2015

- » Electric Dryers
 - Number of Households: 7,320,000
 - Percent of households with electric dryers: 36%
 - Annual energy use for an electric dryer (UEC): 800 kWh
- » Dryer Sales = 7,320,000 * 36% * 800 kWh = 2,108 GWh
- » Energy Intensity: 36% * 800 kWh = 298 kWh

ELECTRIC DRYER INTENSITY (KWH PER HH)

Itron

END-USE MODEL EQUATIONS

- » Each component for each end-use is modeled separately
 - Saturation = f(price, cost, appliance life, availability, ...)
 - Efficiency = f(price, cost, standards, technology options, ...)
 - Size = f(income, cost, options, ...)
 - Usage = f(price, income, weather, ...)
 - Households = f(population, ...)

END-USE FORECASTING APPROACH: ADVANTAGES

- » Ideal for long-term (5- 20 years out)
 - Detailed stock accounting framework
- » Provides detailed end-use information
 - Number of equipment stock units and saturation
 - New and replacements
 - Average and marginal efficiency
 - UEC and energy intensities
 - By housing type single family, multi-family, mobile homes
- Provides an ideal framework for evaluating the energy impact of new standards and technologies

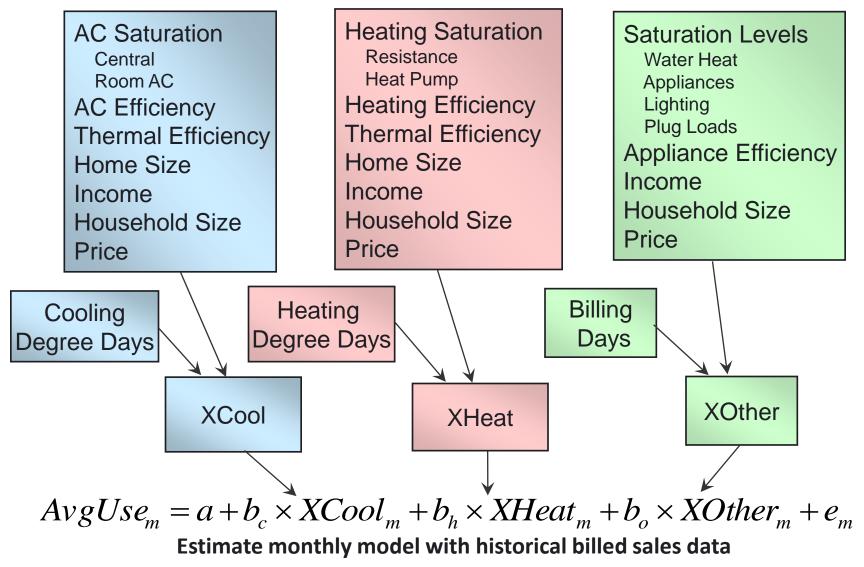
END-USE FORECASTING APPROACH: DISADVANTAGES

- » Expensive to develop and maintain
 - Detail housing structure data
 - Detail technology data requirements
 - Estimates of base year UECs for existing and new housing units (Conditional Demand Study)
- » Does not provide a useful short-term forecast
 - Annual model
 - Highly structured
- » Difficult to integrate with a short-term forecasts

OBJECTIVE

- » Develop an approach that incorporates the best characteristics of an econometric and end-use modeling framework
- We want to account for:
 - Economic impacts: household income, size, growth
 - Price impacts
 - Structural changes: Saturation and efficiency trends, housing square footage, thermal shell integrity improvements
 - Weather impacts
 - Appropriate impact of these variables
- » Ideally, one model for short and long-term forecasting

STATISTICALLY ADJUSTED END-USE MODELING


» Blend end-use concepts into an econometric modeling framework:

- Average Use = Heating + Cooling + Other Use
- » Define heating, cooling, and other use in terms of their end use structure:

Utilization = g (Weather, Price, Income, Household Size)

SAE MODEL

END-USE VARIABLE - HEATING

$$XHeat_{y,m} = HeatIndex_y \times HeatUse_{y,m}$$

$$HeatIndex_{y} = Structural \ Index_{y} \times \sum_{Type} EI_{09}^{Type} \times \frac{\begin{pmatrix} Sat_{y}^{Type} \\ / Eff_{y}^{Type} \end{pmatrix}}{\begin{pmatrix} Sat_{09}^{Type} \\ / Eff_{09}^{Type} \end{pmatrix}}$$

$$HeatUse_{y,m} = \left(\frac{HDD_{y,m}}{HDD_{09}}\right) \times \left(\frac{HHSize_{y,m}}{HHSize_{09}}\right)^{0.20} \times \left(\frac{Income_{y,m}}{Income_{09}}\right)^{0.20} \times \left(\frac{Price_{y,m}}{Price_{09}}\right)^{-0.15}$$

RESIDENTIAL HEATING WEIGHT VARIABLE

Weights Estimated heating energy use per household for each equipment type in the base year

Where:

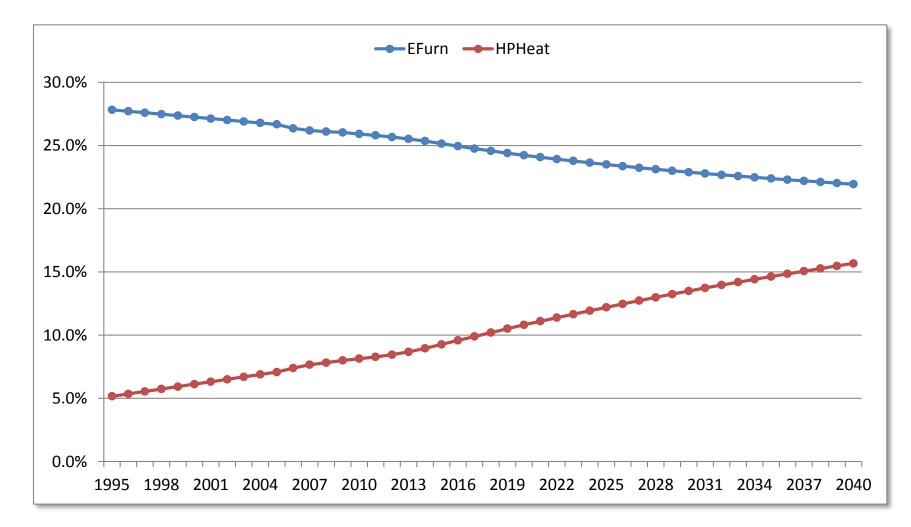
$$EI_{09}^{Type} = UEC_{09}^{Type} \times HeatShare_{09}^{Type}$$

Equipment Type	Energy Intensities
	(2009 kWh/HH)
Electric Furnace/Room Resistance	771
Electric Space Heating Heat Pump	128

RESIDENTIAL STRUCTURAL INDEX

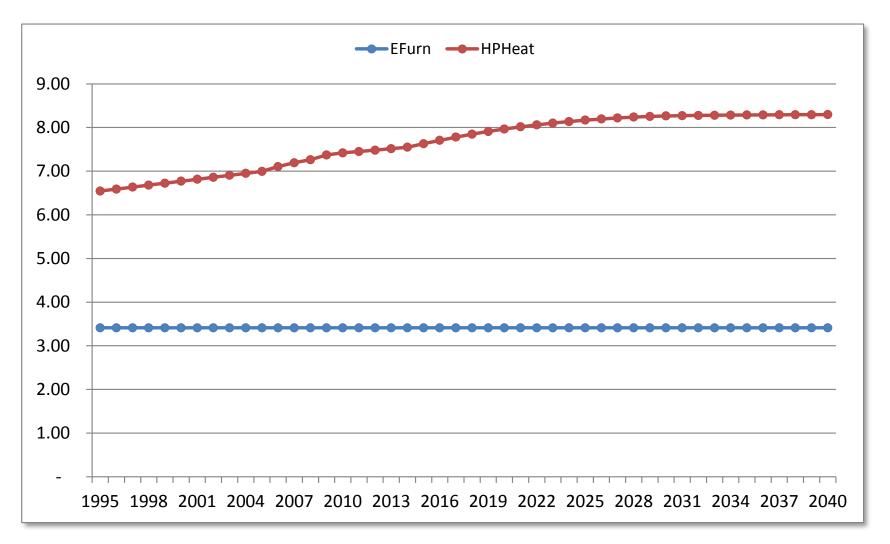
Structural index accounts for

- Change in housing square footage
- Change in structural thermal integrity Overall R-Value

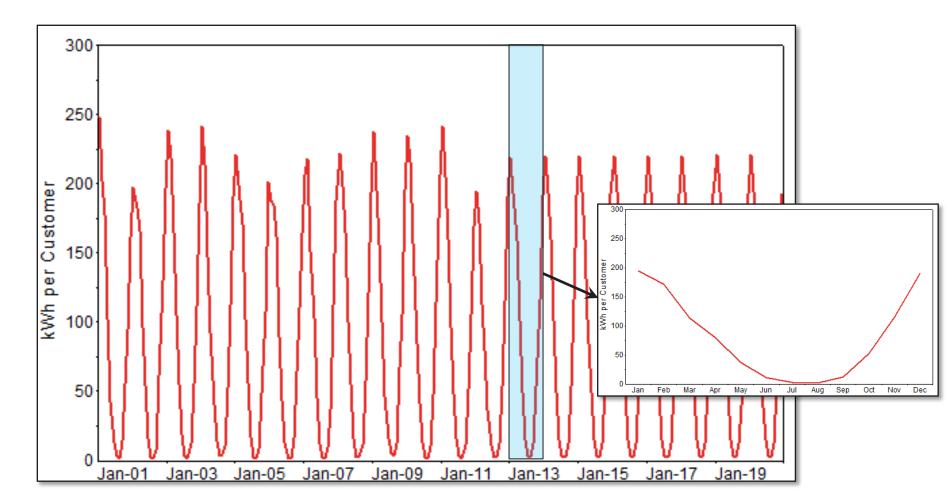

Where:

Structural Index_y = $\frac{Building Shell Efficiency Index_y \times Surface Area_y}{Building Shell Efficiency Index_{09} \times Surface Area_{09}}$ And

Surface Area_v = $892 + 1.44 \times Footage_v$



RESIDENTIAL HEATING SATURATION TRENDS



RESIDENTIAL HEATING EFFICIENCY TRENDS

RESIDENTIAL XHEAT VARIABLE

END-USE VARIABLE - COOLING

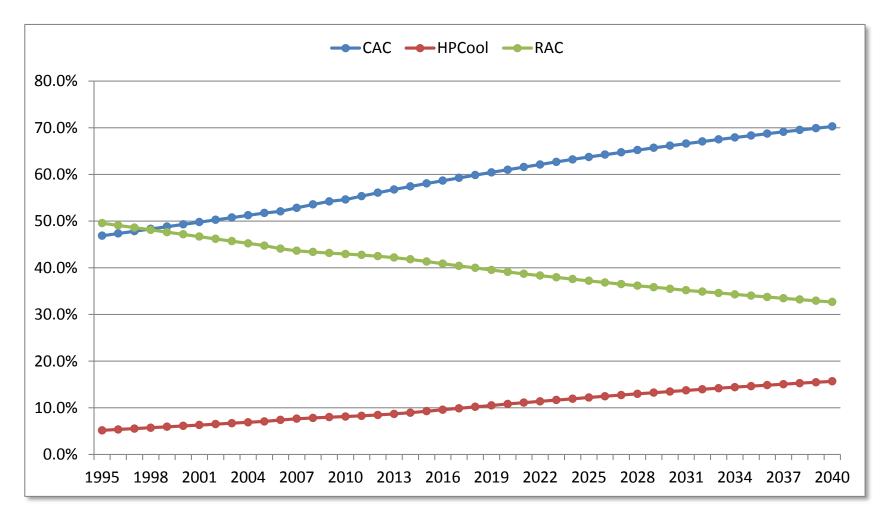
$$XCool_{y,m} = CoolIndex_y \times CoolUse_{y,m}$$

$$CoolIndex_{y} = StructuralIndex_{y} \times \sum_{Type} EI_{09}^{Type} \times \frac{\begin{pmatrix} Sat_{y}^{Type} \\ / Eff_{y}^{Type} \end{pmatrix}}{\begin{pmatrix} Sat_{09}^{Type} \\ / Eff_{09}^{Type} \end{pmatrix}}$$

$$CoolUse_{y,m} = \left(\frac{CDD_{y,m}}{CDD_{09}}\right) \times \left(\frac{HHSize_{y,m}}{HHSize_{09}}\right)^{0.20} \times \left(\frac{Income_{y,m}}{Income_{09}}\right)^{0.20} \times \left(\frac{\Pr ice_{y,m}}{\Pr ice_{09}}\right)^{-0.15}$$

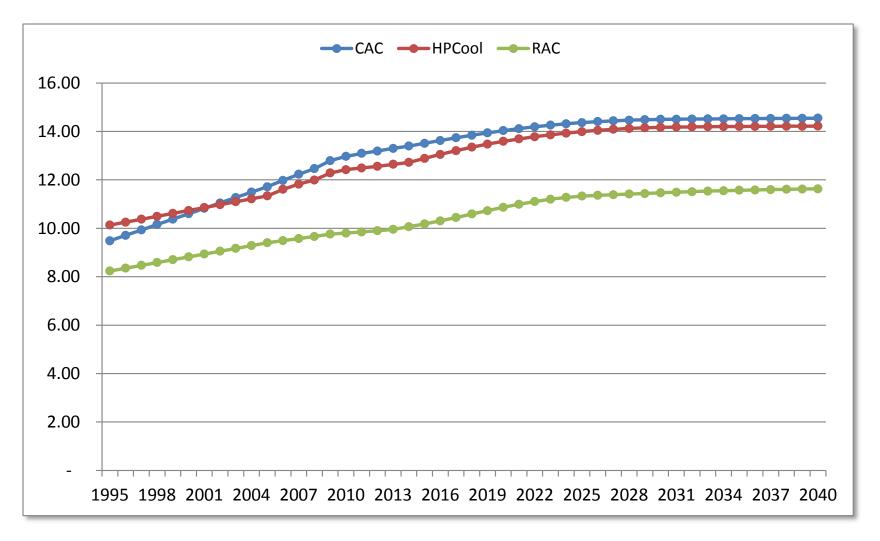
RESIDENTIAL COOLING WEIGHT VARIABLE

Weights Estimated cooling energy use per household for each equipment type in the base year

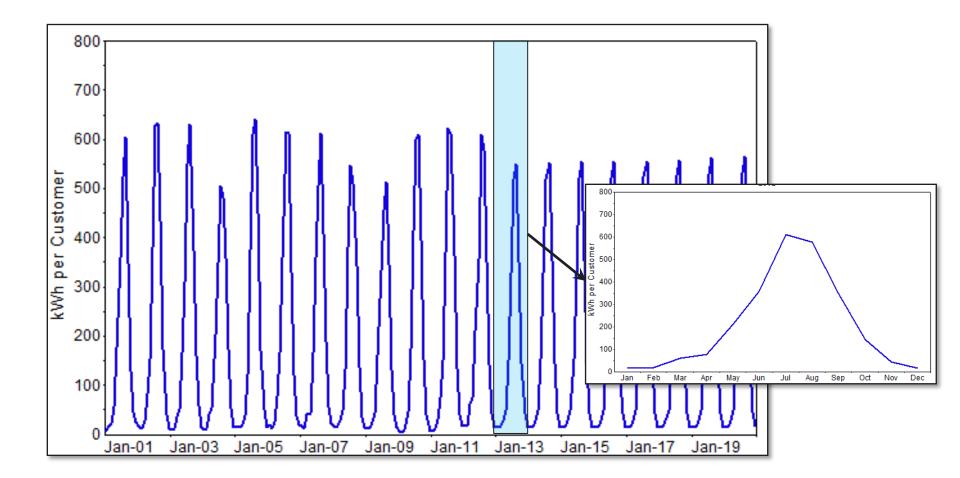

Where:

$$EI_{09}^{Type} = UEC_{09}^{Type} \times CoolShare_{09}^{Type}$$

Equipment Type	Energy Intensities (2009 kWh/HH)
Central Air Conditioner	1,226
Heat Pump Cooling	241
Room Air Conditioner	178



COOLING SATURATION TRENDS



COOLING EFFICIENCY TRENDS

RESIDENTIAL XCOOL VARIABLE

FACTORS IMPACTING OTHER USE

- » Non-weather sensitive end-use saturation and efficiency trends
- » Number of billing days
- » Hours of light
- » Household size and income
- » Prices

XOTHER VARIABLE

$$XOther_{y,m} = OtherEqpIndex_{y,m} \times OtherUse_{y,m}$$

$$Other EqpIndex_{y,m} = EI_{09}^{Type} \times \frac{\begin{pmatrix} Sat_{y}^{Type} \\ / Eff_{y}^{Type} \end{pmatrix}}{\begin{pmatrix} Sat_{09}^{Type} \\ / Eff_{09}^{Type} \end{pmatrix}} \times MoMult_{m}^{Type}$$

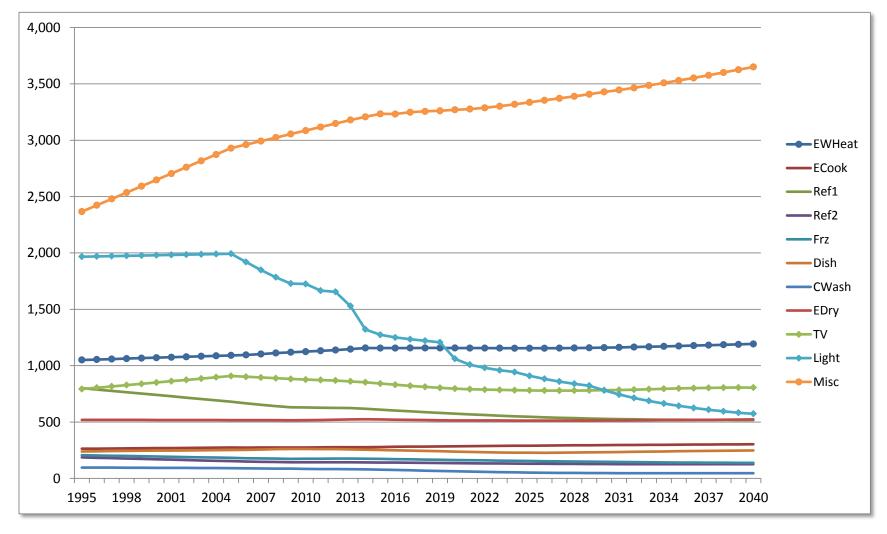
$$OtherUse_{y,m} = \left(\frac{Price_{y,m}}{Price_{09}}\right)^{-0.15} \times \left(\frac{Income_{y,m}}{Income_{09}}\right)^{0.10} \times \left(\frac{HHSize_{y,m}}{HHSize_{09}}\right)^{0.25} \times \left(\frac{BDays_{y,m}}{31}\right)^{0.10}$$

APPLIANCE WEIGHTS

Weights Estimated appliance energy use per household for each equipment type in the base year

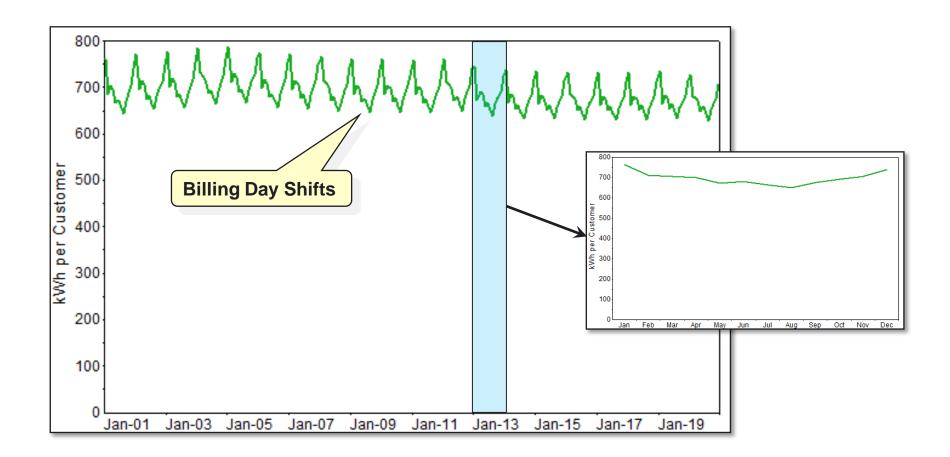
Where:

$$EI_{09}^{Type} = UEC_{09}^{Type} \times Appliance Share_{09}^{Type}$$



RESIDENTIAL NON HVAC END-USE INTENSITIES

End-Use	Energy Intensities (2009 kWh / HH)
Electric Water Heating	475
Electric Cooking	133
Refrigerator	716
Second Refrigerator	90
Freezer	111
Dishwasher	211
Electric Clothes Washer	69
Electric Clothes Dryer	290
TV & Related Equipment	970
Lighting	1,715
Miscellaneous Electric Appliances	2,158



RESIDENTIAL OTHER END-USE INDICES

RESIDENTIAL XOTHER VARIABLE

RESIDENTIAL AVERAGE USE MODEL VARIABLES

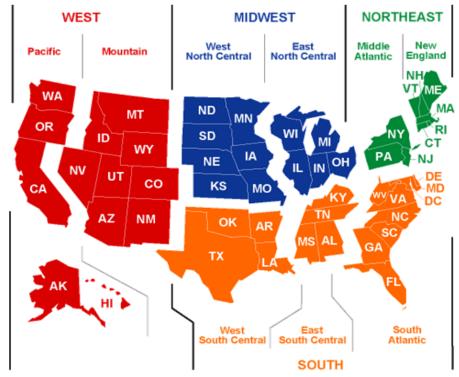
SAE variables calculated as simple transforms

CoolEqp =	(Indices.CAC + Indices.HPCool + Indices.GHPCool + Indices.RAC)*12
CoolUse =	(mEcon.HHSizeInd^Elas.HHSize) * (mEcon.HHIncInd^Elas.HHInc) *
	(mEcon.PriceInd^Elas.Price) * mWthrRev.CDDInd
XCool =	mStructRev.CoolUse * mStructRev.CoolEqp
HeatEqp =	(Indices.EFurn + Indices.HPHeat + Indices.GHPHeat + Indices.SecHt+Indices.FurnFan)*1
HeatUse =	(mEcon.HHSizeInd^Elas.HHSize) * (mEcon.HHIncInd^Elas.HHInc) *
	(mEcon.PriceInd^Elas.Price) * mWthrRev.HDDInd
XHeat =	mStructRev.HeatUse * mStructRev.HeatEqp
OtherUse =	(mEcon.HHSizeInd^Elas.HHSize) * (mEcon.HHIncInd^Elas.HHInc) * (mEcon.PriceInd^Elas.Price) * mWthrRev.BDaysInd
OtherEqpIndex	= Convstock (Indices.EWHeat) * Value (MonthlyMults.EWHeat, 2001, month) +
	Convstock (Indices.ECook) * Value (MonthlyMults.ECook, 2001, month) +
	Convstock (Indices.Ref1) * Value (MonthlyMults.Ref1, 2001, month) + Convstock (Indices.Ref2) * Value (MonthlyMults.Ref2, 2001, month) +
	Convstock (Indices.Frz) * Value (MonthlyMults.Frz, 2001, Month) +
	Convstock (Indices.Fiz) * Value (MonthlyMults.Fiz, 2001, Month) +
	Convstock (Indices.CWash) * Value (MonthlyMults.CWash, 2001, month) +
	Convstock (Indices.EDry) * Value (MonthlyMults.EDry, 2001, month) +
	Convstock (Indices.TV) * Value (MonthlyMults.TV, 2001, month) +
	Convstock (Indices.Light) * Value (MonthlyMults.Light, 2001, month) +
	Convstock (Indices.Misc) * Value (MonthlyMults.Misc, 2001, month)
XOther =	mStructRev.OtherUse * mStructRev.OtherEqpIndex

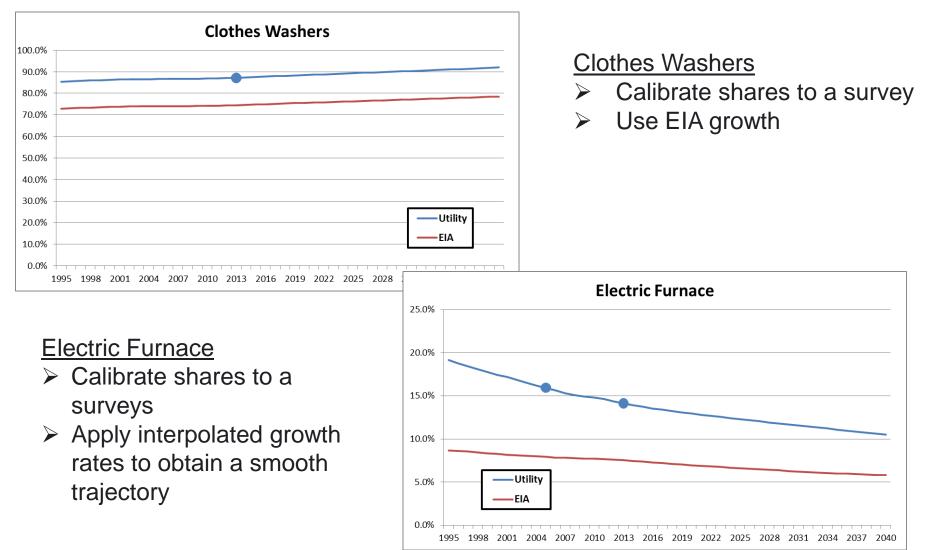
RESIDENTIAL AVERAGE USE MODEL RESULTS

.

...


					, 1	f end	-use estima	tes are a	ocurat	e then
Variable C	oefficient	StdErr	T-Stat	P-Value	15	SAE d	coefficients	will be clo	ose to	1.0.
mStructRev.XHeat	1.053	0.032	33.414	0.00%						
mStructRev.XCool	2.970	0.156	19.009	0.00%						
mStructRev.XOther	0.953	0.010	98.741	0.00%			Indicates	s we are		
							underest	imating		
Model Statistics							cooling	load		
Iterations		11	4000					, load		
Adjusted Observations		133	1000							
Deg. of Freedom for E	rror	120								
R-Squared	(0.970		1		1.1	. I			
Adjusted R-Squared		0.968	750	A A A	T.	-1-1				
AIC		5.523		Allall	Λ	$\Lambda \Lambda$	A. A.A. A.	1. 6. 6	A	. <u> </u>
BIC		5.806		v VV VV '	WV	NINI	NWWWW	V VAL VAL VA	11/11/1	10/10/10/
F-Statistic		#NA	500	1			·····	¥. v. t. V. A. U.	л.п.л.п.h.	
Prob (F-Statistic)		#NA					ctual		Dredie	ted
Log-Likelihood		43.01					lotdar		Predic	ted
Model Sum of Squares			250							
Sum of Squared Errors		94.11								
Mean Squared Error		28.28								
Std. Error of Regression		15.11		n-04 Jan-06	6 10	n-08 Ja	an-10 Jan-12 Jar	1-14 Jan-16	Jan-18	Jan-20 Jan-22
Mean Abs. Dev. (MAD)	·	11.45	Jai		0 081			edicted		Jan-20 Jan-22
Mean Abs. % Err. (MA		.90%								
Durbin-Watson Statisti	c 1	2.055								

WHERE DO THE INTENSITIES COME FROM?


- The Energy Information Administration develops a detail end-use forecast for nine US census divisions
- » Each year, we mine the forecast database for:
 - Number of households
 - Number of appliances
 - End-use consumption
 - End-use saturations
 - End-use average stock efficiency

Data is translated into model intensity Variables in SAE spreadsheets that are compatible with MetrixND

SERVICE AREAS DON'T ALWAYS LOOK LIKE THE CENSUS DIVISION

Itron

CALIBRATE TO SERVICE AREA USAGE

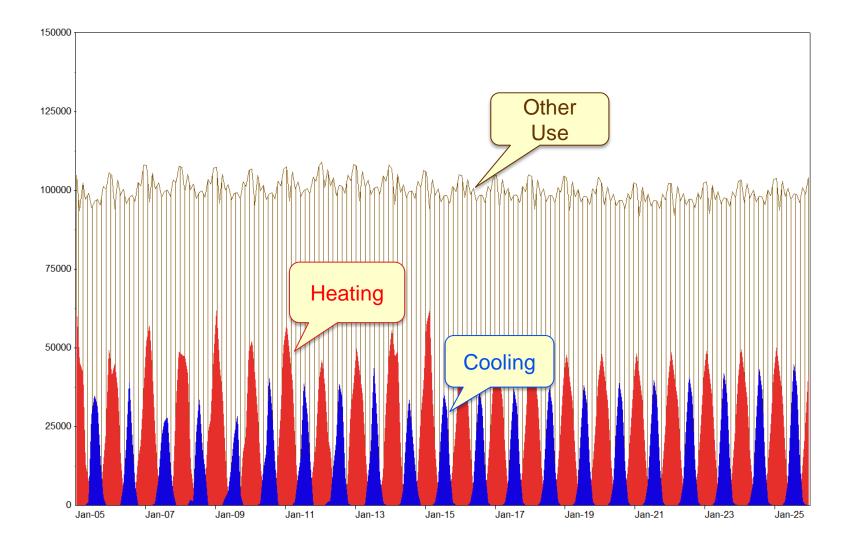
VariableCoefficientStdErrT-StatmStructRev.XHeat0.9400.03725.410mStructRev.XCoo2.2630.17213.187mStructRev.XOther1.9190.01472.247Mean Abs. Dev. (MAD)10.67Mean Abs. % Err. (MAPE)1.74%Durbin-Watson Statistic2.165	1000 750 500				MMMM	alwww.			
Base Year (2009)		EFurn	HPHeat	GHPHeat	SecHt	CAC	HPCool	GHPCool	
Consumption (mmBtu)		4,775,536	39,122	32,414	3,102,096	1,988,768	9,473	10,848	2,382,854
Equipment Stock (units)		429,639	6,705	6,603	1,379,313	1,052,425	6,705 414	6,603	6,095,292
UEC (kWh/unit) Share (%)		3,258 14.9%	1,710 0.1%	1,439 0.1%	659 19.8%	554 12.0%	0.1%	482	115 53.0%
Raw Intensity (kWh/year)		485	2	2	131	66	1	1	61
		100	~		101				
Observed Use Per Customer (kV	//h/year)	7,142	1						
Adjustment Factor		0.823			A A A A A A A A A A A A A A A A A A A				
Adjusted Intensity (kWh/year)		399	2	2	107	55	0	1	50
Variable Coefficient StdErr T-Stat mStructRev.XHeat 0.943 0.037 25.619 mStructRev.XCool 1.151 0.086 13.343 mStructRev.XOther 1.017 0.014 72.369 Mean Abs. Dev. (MAD) 10.58 1.73% Durbin-Watson Statistic 2.188 1.88	750 500			WWW	MAMA	aWWWW			
Base Year (2009)		EEurn	HPHeat	GHPHeat	SecHt	CAC	HPCool	GHPCool	RAC
Consumption (mmBtu)		4,775,536	39,122	32,414	3,102,096	1,988,768	9,473	10,848	2,382,854
Equipment Stock (units)		429,639	6,705	6,603	1,379,313	1,052,425	6,705	6,603	6,095,292
UEC (kWh/unit)		3,258	1,710	1,439	659	554	414	482	115
		14.9%	0.1%	0.1%	19.8%	12.0%	0.1%	0.1%	53.0%
Share (%)		485	2		121	66	1		
		400	2	2	131	00	1	1	61
Share (%) Raw Intensity (kWh/year)			2	2	131	00	1	1	61
Share (%) Raw Intensity (kWh/year) Observed Use Per Customer (kW	Vh/year)	7,142	2	2	131	00	1		61
Share (%) Raw Intensity (kWh/year)	Vh/year)		2	2	107	109			100

RESIDENTIAL SAE SPREADSHEET

SAE spreadsheets are updated after the AEO forecast is released

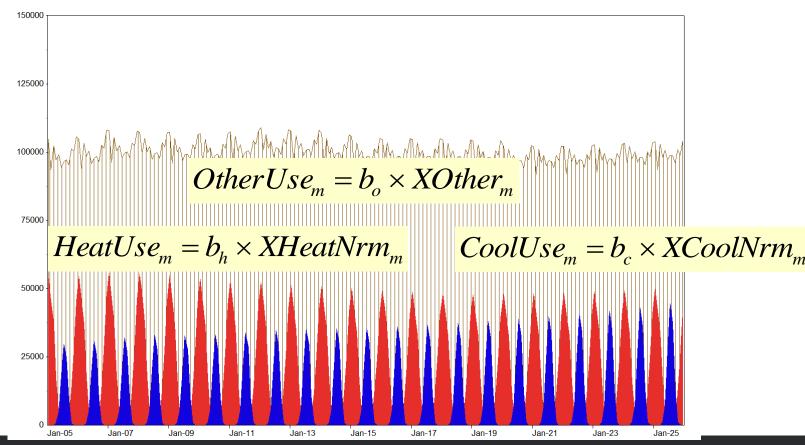
- » *Definitions*: Lists end-uses and measurement units
- » EIA Data: Raw EIA input data
- Calibration: Define base-year parameters (2009), calibrate intensities to service area
- » StructuralVars: average square footage and thermal shell improvement indices
- » Shares: end-use saturations (units / households)
- » Efficiency: average stock efficiency (measured in specific tech definitions such as SEER, or approximated using UEC
- Intensities: calculated end-use intensities from saturations and efficiency (model inputs)

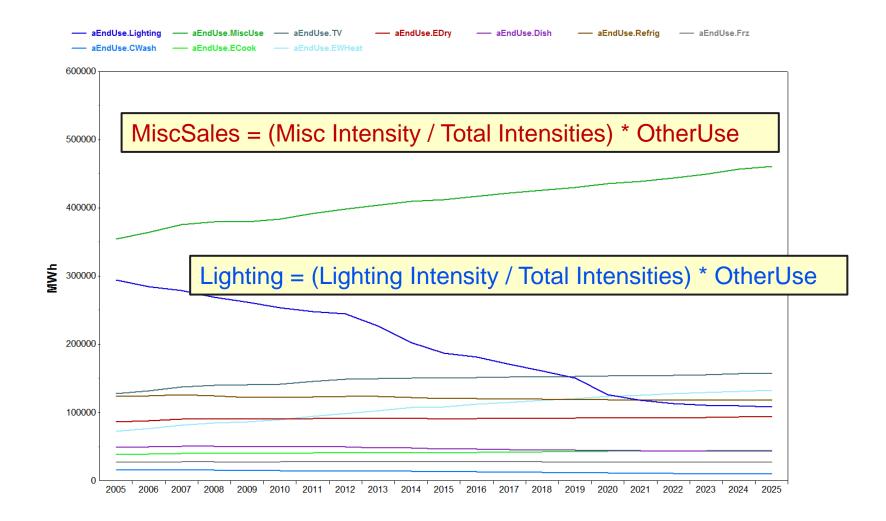
SAE MODEL DECOMPOSITION


 $AvgUse_m = a + b_c \times XCool_m + b_h \times XHeat_m + b_o \times XOther_m + e_m$

» Given estimates for b_c, b_h, and b_o, we can estimate average cooling, heating, and other use

 $CoolUse_{m} = b_{c} \times XCool_{m}$ $HeatUse_{m} = b_{h} \times XHeat_{m}$ $OtherUse_{m} = b_{o} \times XOther_{m}$


VERMONT END-USE SALES ESTIMATES (MWH)


ESTIMATING SALES FOR NORMAL WEATHER

- Why would you want to estimate historical and forecasted sales for normal weather
- If cooling use is increasing faster than base-use, what would this imply for peak demand growth vs. energy growth ?

WE CAN FURTHER BREAK OUT OTHER USE TO END-USES

SAE MODEL SPECIFICATION CONCLUSIONS

- The model specification works well in explaining historical sales trends. Generally we get strong statistical fits.
- » By imposing model structure (elasticities), we can capture the appropriate impacts of changes in economic conditions.
- » Appliance saturation and efficiency trends are embedded in the model structure.
 - Integrates end-use structural indices that will withstand scrutiny in a regulatory environment
 - Allows us to decompose the monthly and annual forecasts into the primary end-use components

SAE MODEL SPECIFICATION CONCLUSIONS

- The SAE modeling approach allows us to develop forecast scenarios for alternative economic assumptions, prices, and appliance saturation and efficiency trends.
- » SAE models are significantly easier to maintain and update than traditional end-use models
- We can use the SAE model to isolate end-use sales for peak forecasting and evaluating EE programs
- » By design, the SAE model "calibrates" into actual sales. We can use the same model for forecasting both short-term and longterm energy requirements.

